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“Words have incredible power. They can maoke people’s hearts soar,
or they can make people’s hearts sore.”
-Dr. Mardy Grothe




WHAT ARE WE DOING?

We are creating a machine learning
model that analyzes speech patterns to
dynamically adjust speech rates and
providing users with feedback.
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MILLION

People face dysarthia.

1 billion

People require speech therapy.




Detailed analysis of
speech rate and emotion,
INncluding visualization.

FEATURES OF
THE MODEL

Real-time feedback to
optimize speech rate.

Speech Rate Classification
with Statistical Analysis.
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Calculation of Speed Rate

e Using both WPM and SPS metrics

110.5 wpm

Inferences 138.9 wpm
e Developed a method to measure the pace of 139.9 wpm
speech in short utterances, addressing limitations ‘Pebbled shore™ [101.7 wpm
of the WPM metric. “Go down™: 129.6 wpm

o Utilized the ILMT-s2s and HCRC corpora to “Then where?”: 219.4 wpm

establish a comparison between human speech

and TTS output rates. Figure 1: Mdn wpm for the six samples — Subject

Accuracy

They provided an adjusted R-squared value of 0.883
for their regression model, indicating a strong fit
between the TTS output duration and subject
utterance duration.

Speech Rate Calculations with Short
Utterances

Hayakawa, A.,_ Vogel, C., Luz, S., & Campbell, N. (2018). Speech Rate Calculations with
Short Utterances: A Study from a Speech-to-Speech, Machine Translation Mediated Map
Task. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B.

(School of Computer Science and Statistics, Trinity College Dublin, Ireland; Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.),
Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, UK) Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018). European Language Resources Association
(ELRA).©https://aclanthology.org/L18-1502
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LITERARY
REVIEW-2

Feature Extraction

e Using Mel-Frequency Cepstral Coefficients
MFCCs

e Perceptual Linear Prediction (PLP)

Methodology Used
e Machine Learning Model: Uses HMMs with

ML and MMI training for speech recognition,

improved with VTLN and MLLR.
e Results and Accuracy: No specific metrics
- focused discriminative training.

Relevance to Dynamic Speech Rate
Adjustment:
e Geared towards speech recognition, not
rate adjustment;
e Feature extraction methods (MFCCs, PLP)
are not designed for dynamic rate
Mmodification.

(Cambridge University Engineering Department, Trumpington Street,)

214 Architecture of an HMM-Based Recogniser
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The application of hidden Markov
models in speech recognition

Gales, M., & Young, S. (2008). The application of hidden Markov models

iNn speech recognition. Foundations and Trends® in Signal Processing,

1(3), 195-304.
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LITERARY
REVIEW-3

Feature Extraction:

e Uses prosodic (pitch, energy, duration)
and spectral (MFCCs, LPCC, formants)
features for emotion recognition.

e Involves segmenting signals into
frames and Mmapping to feature
vectors.

Machine Learning Application:

e Employs classifiers like linear Bayes,
K-NN, SVM, GMM, and neural networks
for emotion detection.

e Utilizes HMM and RNN for sequence- Figure 2: Unified framework that encompasses speech signal processing fields in the scope of the article.
based feature classification.

Speech Technology Progress Based on

. . New Machine
Similar feature extraction methods Learning Paradigm

(especially MFCCs) applicable for speech
rate analysis.

Relevance to Our Project:

. _ . _ . . Deli¢, V., Perié, Z., Sedujski, M., Jakovljevié, N., Nikoli¢, J., Miskovid, D., ... &
(Ur.wlvergty off NEJV| Sad, Fao?lty of Te.chnlca.l Solgnces, 21OOC?VNOVI Sa.ol, Serbia; Delié, T. (2019). Speeoh technology_progress based on new machine
University of Ni's, Faculty of Electronic Engineering, 18000 Ni's, Serbia) learning_paradigm. Computational intelligence and neuroscience, 2019.
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LITERARY
REVIEW-4

Feature Extraction:

e Mel-frequency cepstral coefficients (MFCCs)

for capturing speech characteristics.
e Filter-bank energies (Fbanks) that represent
the short-term power spectrum of the

S{el=1-Telg}
e Rate of Speech (ROS)

Machine Learning Model Used :

e Deep Neural Networks were deployed
e Multilayered architecture for complex pattern
learning

Application in Dynamic Speech
Rate Adjustment:

Recognizes and adapts to the rate of speech (ROS)
Compensates for distortions in fast or slow speech
Improves accuracy in speech recognition systems

Can be combined with HMM transition adjustments

for enhanced performance

(CSLT, RIIT, Tsinghua University;

TNList, Tsinghua University;

Beijing University of Posts and Telecommunications;
Chongqging University of Posts and Telecommunications)

e T
v

of a fast reading for word ‘test’.

Figure 2: The spectrogram of a slow reading for word ‘test’.

Table 7: Results with both the DNN- and HMM-based ROS
compensation.

WER/ !
est set ' ast
ROS . > 10
DNN Baseline L2
+DNN-based compensation 29.54
+HMM-based compensation 29.08

Learning Speech Rate in
Speech Recognition.

Zeng, X.,, Yin, S., & Wang, D. (2019). Learning _Speech Rate in Speech Recognition.
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DATA SET

The CREMA-D dataset is a collection of audio-visual emotional expressions.

Data Collection:
Actors: 91 actors (48 male, 43 female) aged between 20 and 74.

Emotions: The dataset includes recordings of 12 different emotions and the neutral state. The specific
emotions are Anger, Disgust, Fear, Happiness, Neutral, Sadness.

Modalities: Both audio and video recordings are available. For audio, the dataset features high-quality
recordings.

Phrases:. Actors performed a series of 12 scripted phrases, each articulated in multiple emotional tones to
reflect different emotions.

Variability: Each phrase was spoken in multiple emotional tones and at different intensity levels to capture a
range of expressions.

Ethical Concerns in Data Collection:

Consent: All actors provided informed consent for the use of their performances in research and educational
efforts. This consent includes the use of their voice and facial expressions.

Privacy: Steps were taken to ensure that the identity and performance data were handled according to
ethical guidelines, with personal identifiers removed where possible.

Compensation: Actors were compensated for their participation, which is a standard practice to ethically
incentivize participation without coercion.
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IMPLEMENTING ML
FOR SPEECH RATE ADJUSTMENT

e Objective: Enhance real-time speech modulation using advanced machine
learning techniques.

e Approach: Utilize algorithms designed for sequential data analysis to
capture the dynamic nature of speech accurately.

e Progress: Conducted thorough analysis using feature extraction methods
such as MFCCs, essential for understanding intricate speech patterns.

e Goals for the Future: Focus on refining model accuracy, implementing real-
time feedback mechanisms, and extending testing to include a wider array

of speech datasets to ensure robustness and applicability across different

F -

scenarios.
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DATA PREPARATION
AND FEATURE ENGINEERING

e Dataset Utilized: The Crema D dataset was used, providing a diverse linguistic input.
e Preprocessing Techniques: Applied methods include segmentation of audio clips,
Nnormalization of audio levels, and silence trimming to enhance data quality.
e Feature Extraction:
MFCCs (Mel Freqguency Cepstral Coefficients): Crucial for capturing the timbre of
speech, which is vital for distinguishing between different emotional tones.
Pitch and Energy Features: Included to capture the dynamic range and intensity of
speech, facilitating better classification of emotional states.
Speed Classification (WPM): Calculated the WPM of each audio file and then

classified them as slow, fast or at a good pace based on the percentile.




FEATURE CLASSIFICATION

EMOTION CLASSIFICATION

e Random Forest Classifier: Chosen for its robustness in handling overfitting and

its ability to maintain accuracy across diverse datasets.
Advantages:

- Combines multiple decision trees to ensure generalizability and prevent
overfitting.

- Effective in classifying complex datasets with multiple feature types.
Application:
Used to classify the 'dominant_emotion' of speech samples, focusing solely on

identifying the prevalent emotional state without employing metrics like F1 score
for model evaluation in this context.

Training Process:

- Split the data into training and testing sets to validate the effectiveness of the
mModel.

- Trained to recognize various emotions based on the engineered features.
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-9.309282
-3.4414966
-3.4414966
-3.4414966
-2.7363355
-2.7363355
-2.7363355
-4.2012563
-4.2012563
-4.2012563
-2.3922653
-2.3922653
-2.3922653
-6.377226
-6.377226
-6.377226
-3.2939587

mfcc 13

-9.791393
-9.791393
-9.791393
10.484672
10.494672
10.494672
-7.662001
-7.662001
-7.662001
-9.667849
-9.667849
-9.667849
10.209055
10.208055
10.208055
-12.19315
-12,19315
-12.19315
-9.313088

mfcc_14

. 3.5260203
3.5260203
3.5260203
2.3391242
2.3391242
2.3391242
1.8578376
1.8578376
1.8578376
0.5657872
0.5657872
0.5657872
4.6429234
46429234
4.6429234
4,707449
4.707449
4,707449
2.2107668

mfcc_15
. -2.82946
-2.82946
-2.82946
0.90861716
0.9061716
0.90861716
-1.8082355
-1.8092355
-1.8092355
0.161653M
0.16165301
0.16165201
-1.2676045
-1.2676045
-1.2676045
-2.4693842
-2.4693842
-2.4693842
-2.29295

mfcc_16
| -9.73492
-9.73492
-9.73492
-6.1450157
-6.1450157
-6.1450157
-8.129779
-8.129779
-8.129779
-9.0126095
-9.0126095
-8.0126095
-13.408666
-13.408666
-13.408666
-11.639656
-11.639656
-11.639656
-8.388313

mfcc_17

-5.8396273
-5.8396273
-5.8396273
-0.7448092
-0.7448092
-0.7448092
-1.5842165
-1.5842165
-1.5842165
-3.6566296
-3.6566296
-3.6566296
-2.3444402
-2.3444402
-2.3444402

-4.545666

-4.545666

-4.545666
-3.0056298

mfcc_18

| 0.6956932
0.6956932
0.6956932
-7.7682376
-7.7682376
-7.7682376
-5.070552
-5.070552
-5.070552
-2.6409717
-2.6409717
-2.6409717
-1.310818
-1.310818
-1.310818
1.3567295
1.3567295
1.3567295
-1.6189089

mfcc_19
. -8.079308
-8.079308
-8.079308
-4.241329
-4.241329
-4.241329
-3.012066
-3.012066
-3.012066
-7.940986
-7.940986
-7.940986
-7.7136354
7.7136354
7.7136354
-9.157837
-9.157837
-9.157837
-9.51205

mfcc_ 20
. -9.566392
-9.566392
-9.566392
-8.927371
-8.927371
-8.927371
10.162157
-10.162157
-10.162157
-8.460317
-8.460317
-8.460317
-9.908755
-9.908755
-9.908755
-11.573683
-11.573683
-11.573683
-7.6704283

= g e

speed_category

slow
slow
slow
slow
slow
slow
good pace
good pace
good pace
slow
slow
slow
slow
slow
slow
good pace
good pace
good pace

slow




FEATURES

MFCC Mean and Standard deviation:
Extracted from mel-scale frequency - captures speech timbre.

Mean shows average spectral shape - std shows spectral variability.

Dominating_emotion:
Shows the most prevalent emotion that the audio file depicts

Words per minute:
Counts words spoken per minute - key metric for speech rate.

Speech rate category: Classifies the tempo of speech as 'slow', 'good pace’, 'fast'.
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Feature Extraction with 1D CNN:

Role of the CNN with MFCCs

e« CNN layers apply filters to Mel-frequency cepstral coefficients (MFCC) input.

e They detect and enhance subtle patterns in speech, including variations in tone, pace,
and emotion.

e Variations in MFCCs can indicate changes in emotional intonation or differences
between phonetic components such as vowels and consonants.

Impact on Speech Analysis

e CNN identifies subtle patterns to abstract higher-level features from raw audio data.
e These features are critical for tasks like distinguishing between speech sounds,
understanding speech rhnythm, and detecting emotional nuances.

CNN as a sophisticated filter
e The CNN transforms raw audio input into a refined set of features.

e These features reveal deeper insights into the speech’'s structural and emotional
composition.



Temporal Seguence Modeling with LSTM:

Temporal Dependency Handling
e Capability: LSTMs can remember and use past information over long intervals,
essential for capturing the flow and progression in speech patterns.
e Mechanism: Through gates—forget, input, and ocutput—LSTMs manage the flow of
information, deciding what to retain or discard over time.

Sequence Modeling
e Process:. As VMIFCCs move through the LS TM, each unit processes current inputs along
with previously remembered information, gradually building a contextual understanding
of speech.
e Outcome: This ability allows LSTMs to recognize and predict speech characteristics
like emotion or tempo changes that develop over time.

Application in Speech Analysis
 Emotion Detection: By tracking the emotional tone over sentences, LSTMs can
identify underlying emotions that might evolve or be emphasized as speech
progresses.
e Speech Rate Classification: LSTMs assess variations in speed and articulation over
time, critical for determining the speech rate or identifying changes in speech

eo\Viat-Tagl[eI=}



Technical Explanation of Dual Output Architecture in
Speech Analysis Model:

Architecture Design:

e Integration: The model integrates convolutional neural networks (CNNs) and long short-term
memory (LSTM) units in a unified framework. This setup allows for the extraction and temporal
analysis of features like MFCCs, crucial for understanding speech properties.

« Dual Outputs: The final layer of the model splits into two branches, each dedicated to a specific
task—emotion recognition and speech speed classification.

Emotion Recognition:

« Feature Utilization: Emotion classification exploits subtle variations in MFCCs that correspond to
emotional expressions. These features capture essential vocal nuances like pitch and tone, which
are indicators of emotional states.

e Processing Flow: After feature extraction by CNNs, LSTMs analyze these features over time,
enhancing the model's ability to detect emotional nuances that develop throughout the speech.

Speech Speed Classification:

« Temporal Dynamics: The speech speed is determined by analyzing the rate at which words are
spoken, which involves calculating the temporal intervals between spoken words or phonetic
elements.

« Categorization Method: The model categorizes speech into 'slow', 'moderate’, or 'fast' based on
predefined thresholds of words per minute, utilizing the temporal data processed by LSTMs to
assess the overall speech tempo.



/__ # Train Data: First 5000 samples

Split Dataset into Train and Test

P Test Data: Samples from 5000 to 8000

/’///—b Features: Select specific columns (3rd to last-3) for training

Prepare Features and Labels

\ Labels: Encode dominant_emotion and speed_category using OneHotEncoder

¥ Fit on Training Data
Normalize Features using StandardScaler

\—b Transform both Training and Test Data

Reshape Data for CNN Input (Add an extra dimension)

/ emotion_output

/——b Build the Neural Network Model P Input Layer P 1D Convolutional Layer (Conv1D) —— Max Pooling Layer (MaxPooling1D) ——® LSTM Layer (LSTM) —® Flatten Layer (Flatten) —® Dropout Layer (Dropout) —# Two Output Layers (Dense)

\b speed_output

Load Dataset Optimizer: Adam

Compile the Model P Loss: Categorical Crossentropy

Validate on Test Data

P Metrics: Accuracy

 Train the Model P Fit Model on Training Data
\b Set Epochs to 30

Save the Trained Model

Predictions on Test Data P Predict emotion and speed

F1 Score for emotion and speed

Evaluate Model Performance P Confusion Matrix for emotion and speed

Classification Report for emotion and speed




Model Results

Emotion Classification:
e F1 Score (Weighted Average): O.34. Indicates poor performance, showing that the model

struggles to correctly classify various emotions.
e Accuracy: 44%. This highlights the model's Iimited ability to distinguish between different

emotions accurately.
e Confusion Matrix Analysis: Most emotions are incorrectly predicted as 'Neutral', suggesting a bias

or imbalance towards this class.
e Very low recall for most classes except 'Neutral', indicating a lack of sensitivity to other emotional

states.

Speed Classification:
e F1 Score (Weighted Average): O.53. This is better than emotion classification but still indicates

room for improvement.

e Accuracy: 54%. Higher than emotion accuracy, suggesting that the model is somewhat better at
recognizing speech speed.

e Confusion Matrix Analysis: The model shows some confusion between 'slow' and 'fast' speeds,

often misclassifying them as 'moderate’.
e 'Moderate' speed has the highest recall, indicating that the model is most reliable in detecting this

speed category.

These statistics reflect specific challenges in emotion recognition while showing relatively better
performance in speed classification.



Confusion Matrix

Confusion Matrix for Emotion Confusion Matrix for Speed

True Labels
True Labels

3 1
Predicted Labels Predicted Labels




